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Hydrodynamics with noise

» Initial state fluctuations
» Thermal fluctuations — for example Landau-Lifshitz

Nyg(t,k) = (g'(t,k)g”" (¢, k)) = (e + p)T5"

momentum, g* = 7% equilibrium

1. Conceptually important (required by the FDT)
2. Larger in smaller systems: Nparticle ~ 10000 in the heavy-ions
3. Essential near a critical point

How do thermal fluctuations evolve during a Bjorken expansion?
How do thermal fluctuations change the Bjorken expansion?
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Kinetic regime of hydrodynamic fluctuations — a new scale £,

1. For hydrodynamic fluctuations with wavenumber k:

» Equilibration rate ~ ~, k? (v =n/(e+Dp))
» Expansion rate ~ 1/7 for a Bjorken expansion

2. Compete at a critical scale:

1
<<k>|<'\’

1
CsT CsTAE
—_————

ks« is hard !

We derive an effective description for the kinetic regime k.



Hydro-kinetic equation: an analogy with Brownian motion

1. Langevin equation

% =t & mE) =2TMA3(t — 1)

drag noise
2. Calculate how (p?(t)) evolves through Langevin process

%<p2> = —2v [(p®) — MT]

-

equilibration

Follow the same steps for hydrodynamics with external forcing
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Hydro-kinetic equation: an analogy with Brownian motion

1. Langevin equation

% =t & mE) =2TMA3(t — 1)

drag noise
2. Calculate how (p?(t)) evolves through Langevin process

d

£<P2> = —2v [(p*) — MT] + external forcing

equilibration

Follow the same steps for hydrodynamics with external forcing
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Hydro-Langevin equation

L

&

1. Linearized analysis in Bjorken: e = ey + de, § = (eg + po)v

da(t, k) = (csde, §)
2. Hydro-Langevin equation for ¢,(t, E)
~(t,k) = iLp + Do + £+ P(t)o
~N =~ =
ideal viscous expansion

3. Four eigenmodes of L: ¢4, ¢, o1y, d1,

left moving sound right moving sound transverse modes

Ao = —csk Ay = csk Ar =0

The Hydro-Langevin equation in eigen basis is similar to Brownian motion
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Eigenbasis in the Bjorken expansion

1 -
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Hydro-kinetic equation

1. Analyze the square of the eigenmodes — for example

Noy (t,F) = (6 (8, F)3 (1, )
2. Hydro-kinetic equations for Ny and Np,7,

. 4 1
Ny, = —gfynkz [Ny+ — To(eo + po)] — - 2+ ¢ + cos? O] Niy

Nryp, = —2vk* [Nryr, — To(eo + po)]

~
equilibration

2
— ; [1 =+ Sin2 Gk] NT2T2

Vv
external forcing

3. Neglect off-diagonal components of density matrix
N+, ~ e—i()ur—)\f)t ~ 0
~————
rotating wave approx

No mixing between T7 and T because of rotational symmetry in zy plane

Hydro fluctuations are driven out of equilibrium at k,
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Solution of the hydro-kinetic equation
Bjorken expansion at late times

N, . / equilibrium

0.8
0.6
0.4
0.2

Sound Modes

k=1, "2

hydro-kinetics

VisC. approx ------
05 1 15 2 25
K/K«

N7,/ equilibrium

Transverse modes

cos(6)=0.1 K=ty 1"
)/ hydro-kinetics —
’ VISC approx -
05 1 1 5 2 2 5 3 35 4

K/ ks

k. is the critical scale: For larger k > k., closer to equilibrium

NAANNeq |:1+

7+
k2

+. ]
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Evolution of the background

=

« T
pa

Hydrodynamic equation for a Bjorken expansion:
d

27T = T
dr (7 )

» Without hydrodynamic fluctuations:

4ng 8
T% = py — o (A = n7r) =
~~ 37 971
ideal v v
1st order 2nd order

» Hydrodynamic fluctuations give another contributions
(9°97)
T2 = (eg + ufu®)y =
fluct ( 0 pO)( > o + po
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Nonlinear contributions from k, to the background

Lk

-

1. Compute the contribution from fluctuation

A
(g* (4, 3))?) = / @k [Nyt cos? 0y + Ny, sin? 6]

~ 14 #/(yTE?) 4 - for k> k.

» Regularize cubic and linear UV divergences by a cutoff A
2. Renormalize the divergences c. kovtun-Moore-Romatschie (11)

AT 4 17AT ey + po _
T =po(A) + — —— A finit
= Pphys = Tphys

The cutoff dependence is absorbed by renormalization of pg and 7g
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Finite contributions: Long-time tails

Evaluate the finite parts after renormalization

. 4n 1 \*?
T*= p — 3 +1.08318 T' 1 +
ideal v Tn

1st order

long-time tail

Simple understanding of the scaling

1 \3/2
Thice ~ skpT / &k ~Tk:i’~T( )

InT
—— ——
equipart # of modes

The finite contribution from k, gives the long-time tails
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Implications for heavy-ion collisions

Plugging in typical values

T3N 1 Al_nTﬂ-N—OS n \?
s 13.5’ e+p ~ \e+p

Compute 4(T%*) /(e + p)
n 1 4.5 4.5\3/? 4.5\
-=—: 1-0.092(— 034 | —; —0. =
. = 1n 0.09 <7‘T> +0.03 <TT 0.00085 T

2 4.5 4.5 3/2 4.5 2
== 1 —0185(—)+0.013( =] —0.0034  —
i 085<T> 003<T> 0.003 <T>

ideal

» |3

1st order 1.5th order 2nd order

Thermal fluctuation is practically larger than 2nd order viscous correction
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A few remarks on transverse pressure
There is an extra contribution from initial-time fluctuations:

277 3/2
- T MY T
ideal o
1st order long-time tail
X% +oxg ] 1
T2(e +p)? | 1277,

initial time contributions from T}

Origin of the initial time contributions:
» Initial fluctuations with a long-range rapidity correlation (%)
> Initial-time thermal fluctuations diffused in rapidity (6x%)
6v5(70)

An ~ oy [ 2100
70

Initial and initial-time thermal fluctuations of 77 mode contribute to T%%
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Comparison to previous diagrammatic calculation in static systems

c.f. Kovtun-Moore-Romatschke (11), Kovtun-Yaffe (03)

1. Apply a shear perturbation: ‘
— )x/

2. Compute how N, evolves away from equilibrium:

Nyy = —k?[Nyy — Negl + A(t) Ny

3. Compute fluctuation contribution to stress in the linear order of h:

. T Y
%Y :pohzy+n0hmy+ <g g )
eg + po

4. Separate divergent and finite contributions in (g*g¥):

1w
ZqY ~ —_—

Follow the same procedure with the Bjorken expansion
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Result for shear response function

Linear response of T (w) to hay(w)

c.f. Kovtun-Moore-Romatschke (11), Kovtun-Yaffe (03)

T (w AT , 17AT
Gr(w) = <):<p0+67r2)—z<77 +>w

hoy (w) 0 12072,
= Pphys = Tphys
(§)3/2 + 7 w\*?
1442 7=
F 2407 <%7>

long-time tail

Comments:
» Diagrams: Computation in a flat space

» Kinetic: Computation in a curved space

The hydro-kinetic theory reproduced the previous result with diagrams
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Summary & Outlook

v

Hydro-kinetic equation for k,, advantageous in expanding systems

v

Universal renormalization of pressure po(A) and viscosity 79 (A)

v

Background-dependent long-time tails oc 773/2, w3/2

v

Alternative way to solve the hydrodynamics with noise

d,T" =0, Nag=---, = Tlieg + /NAAa

v

Bulk viscosity renormalization for nonconformal fluid

1 Tde 223+ 1 ,\?2s
-+ = —cs | 4 - —cC
3 2dr ) I, \3 %)

Application to critical dynamics YA-Teaney-Yan-Yin, in progress

YA-Mazeliauskas-Teaney, in preparation

AT?
272

¢ =Co(A) +

v
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Bulk viscosity from thermal fluctuations

» Use lattice EoS by Hot QCD Collaboration
» For (o(A) =0 case
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Bulk viscosity from thermal fluctuations enhances near T7*
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Thank you for your attention!



